PyWxDump/pywxdump/dbpreprocess/parsingFavorite.py

155 lines
6.0 KiB
Python
Raw Normal View History

2024-05-18 00:23:59 +08:00
# -*- coding: utf-8 -*-#
# -------------------------------------------------------------------------------
# Name: parsingFavorite.py
# Description:
# Author: xaoyaoo
# Date: 2024/05/18
# -------------------------------------------------------------------------------
2024-05-19 21:00:42 +08:00
import pandas as pd
2024-05-18 00:23:59 +08:00
from .dbbase import DatabaseBase
2024-05-18 22:23:54 +08:00
from .utils import timestamp2str, xml2dict
2024-05-18 00:23:59 +08:00
2024-05-18 00:26:53 +08:00
# * FavItems收藏的消息条目列表
# * FavDataItem收藏的具体数据。大概可以确定以下两点
# * 即使只是简单收藏一篇公众号文章也会在 FavDataItem 中有一个对应的记录
# * 对于收藏的合并转发类型的消息,合并转发中的每一条消息在 FavDataItem 中都是一个独立的记录
# * FavTags为收藏内容添加的标签
2024-05-18 00:23:59 +08:00
2024-05-18 22:23:54 +08:00
def FavoriteTypeId2Name(Type):
TypeNameDict = {
1: "文本", # 文本 已测试
2: "图片", # 图片 已测试
3: "语音", # 语音
4: "视频", # 视频 已测试
5: "链接", # 链接 已测试
6: "位置", # 位置
7: "小程序", # 小程序
8: "文件", # 文件 已测试
14: "聊天记录", # 聊天记录 已测试
16: "群聊视频", # 群聊中的视频 可能
18: "笔记" # 笔记 已测试
}
return TypeNameDict.get(Type, "未知")
2024-05-18 00:23:59 +08:00
class ParsingFavorite(DatabaseBase):
_class_name = "Favorite"
def __init__(self, db_path):
super().__init__(db_path)
2024-05-19 21:06:46 +08:00
def get_tags(self, LocalID):
2024-05-18 22:23:54 +08:00
"""
return: {LocalID: TagName}
"""
2024-05-19 21:06:46 +08:00
if LocalID is None:
sql = "select LocalID, TagName from FavTagDatas order by ServerSeq"
else:
sql = "select LocalID, TagName from FavTagDatas where LocalID = '%s' order by ServerSeq " % LocalID
2024-05-18 22:23:54 +08:00
tags = self.execute_sql(sql) # [(1, 797940830, '程序语言类'), (2, 806153863, '账单')]
# 转换为字典
tags = {tag[0]: tag[1] for tag in tags}
return tags
def get_FavBindTags(self):
"""
return: [(FavLocalID, TagName)]
"""
sql = "select A.FavLocalID, B.TagName from FavBindTagDatas A, FavTagDatas B where A.TagLocalID = B.LocalID"
FavBindTags = self.execute_sql(sql)
return FavBindTags
2024-05-18 00:23:59 +08:00
def get_favorite(self):
2024-05-18 22:23:54 +08:00
"""
return: [{FavItemsFields}, {FavItemsFields}]
"""
FavItemsFields = {
"FavLocalID": "本地收藏ID",
"SvrFavId": "服务器收藏ID",
"SourceId": "源ID",
"Type": "类型",
"SourceType": "源类型",
"LocalStatus": "本地状态",
"Flag": "标记",
"Status": "状态",
"FromUser": "源用户",
"RealChatName": "实际聊天名称",
"SearchKey": "搜索关键字",
"UpdateTime": "更新时间",
"reseverd0": "预留字段0",
"XmlBuf": "XML缓冲区"
}
FavDataItemFields = {
"FavLocalID": "本地收藏ID",
"Type": "类型",
"DataId": "数据ID",
"HtmlId": "HTML ID",
"Datasourceid": "数据源ID",
"Datastatus": "数据状态",
"Datafmt": "数据格式",
"Datatitle": "数据标题",
"Datadesc": "数据描述",
"Thumbfullmd5": "缩略图全MD5",
"Thumbhead256md5": "缩略图头256MD5",
"Thumbfullsize": "缩略图全尺寸",
"fullmd5": "全MD5",
"head256md5": "头256MD5",
"fullsize": "全尺寸",
"cdn_thumburl": "CDN缩略图URL",
"cdn_thumbkey": "CDN缩略图KEY",
"thumb_width": "缩略图宽度",
"thumb_height": "缩略图高度",
"cdn_dataurl": "CDN数据URL",
"cdn_datakey": "CDN数据KEY",
"cdn_encryver": "CDN加密版本",
"duration": "时长",
"stream_weburl": "流媒体WEB URL",
"stream_dataurl": "流媒体数据URL",
"stream_lowbandurl": "流媒体低带宽URL",
"sourcethumbpath": "源缩略图路径",
"sourcedatapath": "源数据路径",
"stream_videoid": "流媒体视频ID",
"Rerserved1": "保留字段1",
"Rerserved2": "保留字段2",
"Rerserved3": "保留字段3",
"Rerserved4": "保留字段4",
"Rerserved5": "保留字段5",
"Rerserved6": "保留字段6",
"Rerserved7": "保留字段7"
}
sql1 = "select " + ",".join(FavItemsFields.keys()) + " from FavItems order by UpdateTime desc"
sql2 = "select " + ",".join(FavDataItemFields.keys()) + " from FavDataItem B order by B.RecId asc"
FavItemsList = self.execute_sql(sql1)
FavDataItemList = self.execute_sql(sql2)
if FavItemsList is None or len(FavItemsList) == 0:
return False
FavDataDict = {}
if FavDataItemList and len(FavDataItemList) >= 0:
for item in FavDataItemList:
data_dict = {}
for i, key in enumerate(FavDataItemFields.keys()):
data_dict[key] = item[i]
FavDataDict[item[0]] = FavDataDict.get(item[0], []) + [data_dict]
# 获取标签
FavTags = self.get_FavBindTags()
FavTagsDict = {}
for FavLocalID, TagName in FavTags:
FavTagsDict[FavLocalID] = FavTagsDict.get(FavLocalID, []) + [TagName]
pf = pd.DataFrame(FavItemsList)
pf.columns = FavItemsFields.keys() # set column names
pf["UpdateTime"] = pf["UpdateTime"].apply(timestamp2str) # 处理时间
pf["XmlBuf"] = pf["XmlBuf"].apply(xml2dict) # 处理xml
pf["TypeName"] = pf["Type"].apply(FavoriteTypeId2Name) # 添加类型名称列
pf["FavData"] = pf["FavLocalID"].apply(lambda x: FavDataDict.get(x, [])) # 添加数据列
pf["Tags"] = pf["FavLocalID"].apply(lambda x: FavTagsDict.get(x, [])) # 添加标签列
pf = pf.fillna("") # 去掉Nan
rdata = pf.to_dict(orient="records")
return rdata