PyWxDump/pywxdump/db/dbFavorite.py

187 lines
7.5 KiB
Python
Raw Normal View History

2024-05-18 00:23:59 +08:00
# -*- coding: utf-8 -*-#
# -------------------------------------------------------------------------------
2024-08-13 17:31:06 +08:00
# Name: Favorite.py
# Description: 负责处理wx收藏数据库
2024-05-18 00:23:59 +08:00
# Author: xaoyaoo
# Date: 2024/05/18
# -------------------------------------------------------------------------------
2024-10-09 14:40:50 +08:00
from collections import defaultdict
2024-05-18 00:23:59 +08:00
from .dbbase import DatabaseBase
2024-05-18 22:23:54 +08:00
from .utils import timestamp2str, xml2dict
2024-05-18 00:23:59 +08:00
2024-05-18 00:26:53 +08:00
# * FavItems收藏的消息条目列表
# * FavDataItem收藏的具体数据。大概可以确定以下两点
# * 即使只是简单收藏一篇公众号文章也会在 FavDataItem 中有一个对应的记录
# * 对于收藏的合并转发类型的消息,合并转发中的每一条消息在 FavDataItem 中都是一个独立的记录
# * FavTags为收藏内容添加的标签
2024-05-18 00:23:59 +08:00
2024-05-18 22:23:54 +08:00
class FavoriteHandler(DatabaseBase):
2024-05-18 00:23:59 +08:00
_class_name = "Favorite"
Favorite_required_tables = ["FavItems", "FavDataItem", "FavTagDatas", "FavBindTagDatas"]
2024-05-18 00:23:59 +08:00
2024-05-19 21:06:46 +08:00
def get_tags(self, LocalID):
2024-05-18 22:23:54 +08:00
"""
return: {LocalID: TagName}
"""
if not self.tables_exist("FavTagDatas"):
return {}
2024-05-19 21:06:46 +08:00
if LocalID is None:
sql = "select LocalID, TagName from FavTagDatas order by ServerSeq"
else:
sql = "select LocalID, TagName from FavTagDatas where LocalID = '%s' order by ServerSeq " % LocalID
tags = self.execute(sql) # [(1, 797940830, '程序语言类'), (2, 806153863, '账单')]
2024-05-18 22:23:54 +08:00
# 转换为字典
tags = {tag[0]: tag[1] for tag in tags}
return tags
def get_FavBindTags(self):
"""
return: [(FavLocalID, TagName)]
"""
2024-10-09 15:15:39 +08:00
sql = ("select DISTINCT A.FavLocalID, B.TagName "
"from FavBindTagDatas A, FavTagDatas B where A.TagLocalID = B.LocalID")
FavBindTags = self.execute(sql)
2024-05-18 22:23:54 +08:00
return FavBindTags
2024-05-18 00:23:59 +08:00
def get_favorite(self):
2024-05-18 22:23:54 +08:00
"""
return: [{FavItemsFields}, {FavItemsFields}]
"""
FavItemsFields = {
"FavLocalID": "本地收藏ID",
"SvrFavId": "服务器收藏ID",
"SourceId": "源ID",
"Type": "类型",
"SourceType": "源类型",
"LocalStatus": "本地状态",
"Flag": "标记",
"Status": "状态",
"FromUser": "源用户",
"RealChatName": "实际聊天名称",
"SearchKey": "搜索关键字",
"UpdateTime": "更新时间",
"reseverd0": "预留字段0",
"XmlBuf": "XML缓冲区"
}
FavDataItemFields = {
"FavLocalID": "本地收藏ID",
"Type": "类型",
"DataId": "数据ID",
"HtmlId": "HTML ID",
"Datasourceid": "数据源ID",
"Datastatus": "数据状态",
"Datafmt": "数据格式",
"Datatitle": "数据标题",
"Datadesc": "数据描述",
"Thumbfullmd5": "缩略图全MD5",
"Thumbhead256md5": "缩略图头256MD5",
"Thumbfullsize": "缩略图全尺寸",
"fullmd5": "全MD5",
"head256md5": "头256MD5",
"fullsize": "全尺寸",
"cdn_thumburl": "CDN缩略图URL",
"cdn_thumbkey": "CDN缩略图KEY",
"thumb_width": "缩略图宽度",
"thumb_height": "缩略图高度",
"cdn_dataurl": "CDN数据URL",
"cdn_datakey": "CDN数据KEY",
"cdn_encryver": "CDN加密版本",
"duration": "时长",
"stream_weburl": "流媒体WEB URL",
"stream_dataurl": "流媒体数据URL",
"stream_lowbandurl": "流媒体低带宽URL",
"sourcethumbpath": "源缩略图路径",
"sourcedatapath": "源数据路径",
"stream_videoid": "流媒体视频ID",
"Rerserved1": "保留字段1",
"Rerserved2": "保留字段2",
"Rerserved3": "保留字段3",
"Rerserved4": "保留字段4",
"Rerserved5": "保留字段5",
"Rerserved6": "保留字段6",
"Rerserved7": "保留字段7"
}
if not self.tables_exist(["FavItems", "FavDataItem"]):
return False
2024-05-18 22:23:54 +08:00
sql1 = "select " + ",".join(FavItemsFields.keys()) + " from FavItems order by UpdateTime desc"
sql2 = "select " + ",".join(FavDataItemFields.keys()) + " from FavDataItem B order by B.RecId asc"
FavItemsList = self.execute(sql1)
FavDataItemList = self.execute(sql2)
2024-05-18 22:23:54 +08:00
if FavItemsList is None or len(FavItemsList) == 0:
return False
FavDataDict = {}
if FavDataItemList and len(FavDataItemList) >= 0:
for item in FavDataItemList:
data_dict = {}
for i, key in enumerate(FavDataItemFields.keys()):
data_dict[key] = item[i]
FavDataDict[item[0]] = FavDataDict.get(item[0], []) + [data_dict]
# 获取标签
FavTags = self.get_FavBindTags()
FavTagsDict = {}
for FavLocalID, TagName in FavTags:
FavTagsDict[FavLocalID] = FavTagsDict.get(FavLocalID, []) + [TagName]
2024-10-09 15:15:39 +08:00
rdata = []
for item in FavItemsList:
processed_item = {
key: item[i] for i, key in enumerate(FavItemsFields.keys())
}
processed_item['UpdateTime'] = timestamp2str(processed_item['UpdateTime'])
processed_item['XmlBuf'] = xml2dict(processed_item['XmlBuf'])
processed_item['TypeName'] = Favorite_type_converter(processed_item['Type'])
processed_item['FavData'] = FavDataDict.get(processed_item['FavLocalID'], [])
processed_item['Tags'] = FavTagsDict.get(processed_item['FavLocalID'], [])
rdata.append(processed_item)
2024-08-18 13:33:08 +08:00
try:
import pandas as pd
except ImportError:
return False
2024-05-18 22:23:54 +08:00
pf = pd.DataFrame(FavItemsList)
pf.columns = FavItemsFields.keys() # set column names
pf["UpdateTime"] = pf["UpdateTime"].apply(timestamp2str) # 处理时间
pf["XmlBuf"] = pf["XmlBuf"].apply(xml2dict) # 处理xml
2024-10-09 14:40:50 +08:00
pf["TypeName"] = pf["Type"].apply(Favorite_type_converter) # 添加类型名称列
2024-05-18 22:23:54 +08:00
pf["FavData"] = pf["FavLocalID"].apply(lambda x: FavDataDict.get(x, [])) # 添加数据列
pf["Tags"] = pf["FavLocalID"].apply(lambda x: FavTagsDict.get(x, [])) # 添加标签列
pf = pf.fillna("") # 去掉Nan
rdata = pf.to_dict(orient="records")
return rdata
2024-10-09 14:40:50 +08:00
def Favorite_type_converter(type_id_or_name: [str, int]):
"""
收藏类型ID与名称转换
名称(str)=>ID(int)
ID(int)=>名称(str)
:param type_id_or_name: 消息类型ID或名称
:return: 消息类型名称或ID
"""
type_name_dict = defaultdict(lambda: "未知", {
1: "文本", # 文本 已测试
2: "图片", # 图片 已测试
3: "语音", # 语音
4: "视频", # 视频 已测试
5: "链接", # 链接 已测试
6: "位置", # 位置
7: "小程序", # 小程序
8: "文件", # 文件 已测试
14: "聊天记录", # 聊天记录 已测试
16: "群聊视频", # 群聊中的视频 可能
18: "笔记" # 笔记 已测试
2024-10-09 14:40:50 +08:00
})
if isinstance(type_id_or_name, int):
return type_name_dict[type_id_or_name]
elif isinstance(type_id_or_name, str):
return next((k for k, v in type_name_dict.items() if v == type_id_or_name), (0, 0))
else:
raise ValueError("Invalid input type")