289 lines
9.1 KiB
Python
289 lines
9.1 KiB
Python
# -*- coding: utf-8 -*-#
|
||
# -------------------------------------------------------------------------------
|
||
# Name: parse.py
|
||
# Description: 解析数据库内容
|
||
# Author: xaoyaoo
|
||
# Date: 2023/09/27
|
||
# -------------------------------------------------------------------------------
|
||
import os.path
|
||
import sqlite3
|
||
import pysilk
|
||
from io import BytesIO
|
||
import wave
|
||
import pyaudio
|
||
import requests
|
||
import hashlib
|
||
|
||
from PIL import Image
|
||
import xml.etree.ElementTree as ET
|
||
|
||
|
||
def get_md5(data):
|
||
md5 = hashlib.md5()
|
||
md5.update(data)
|
||
return md5.hexdigest()
|
||
|
||
|
||
def parse_xml_string(xml_string):
|
||
"""
|
||
解析 XML 字符串
|
||
:param xml_string: 要解析的 XML 字符串
|
||
:return: 解析结果,以字典形式返回
|
||
"""
|
||
|
||
def parse_xml(element):
|
||
"""
|
||
递归解析 XML 元素
|
||
:param element: 要解析的 XML 元素
|
||
:return: 解析结果,以字典形式返回
|
||
"""
|
||
result = {}
|
||
|
||
# 解析当前元素的属性
|
||
for key, value in element.attrib.items():
|
||
result[key] = value
|
||
|
||
# 解析当前元素的子元素
|
||
for child in element:
|
||
child_result = parse_xml(child)
|
||
|
||
# 如果子元素的标签已经在结果中存在,则将其转换为列表
|
||
if child.tag in result:
|
||
if not isinstance(result[child.tag], list):
|
||
result[child.tag] = [result[child.tag]]
|
||
result[child.tag].append(child_result)
|
||
else:
|
||
result[child.tag] = child_result
|
||
|
||
# 如果当前元素没有子元素,则将其文本内容作为值保存
|
||
if not result and element.text:
|
||
result = element.text
|
||
|
||
return result
|
||
|
||
if xml_string is None or not isinstance(xml_string, str):
|
||
return None
|
||
try:
|
||
root = ET.fromstring(xml_string)
|
||
except Exception as e:
|
||
return xml_string
|
||
return parse_xml(root)
|
||
|
||
|
||
def read_img_dat(input_data):
|
||
"""
|
||
读取图片文件dat格式
|
||
:param input_data: 图片文件路径或者图片文件数据
|
||
:return: 图片格式,图片md5,图片数据
|
||
"""
|
||
# 常见图片格式的文件头
|
||
img_head = {
|
||
b"\xFF\xD8\xFF": ".jpg",
|
||
b"\x89\x50\x4E\x47": ".png",
|
||
b"\x47\x49\x46\x38": ".gif",
|
||
b"\x42\x4D": ".BMP",
|
||
b"\x49\x49": ".TIFF",
|
||
b"\x4D\x4D": ".TIFF",
|
||
b"\x00\x00\x01\x00": ".ICO",
|
||
b"\x52\x49\x46\x46": ".WebP",
|
||
b"\x00\x00\x00\x18\x66\x74\x79\x70\x68\x65\x69\x63": ".HEIC",
|
||
}
|
||
|
||
if isinstance(input_data, str):
|
||
with open(input_data, "rb") as f:
|
||
input_bytes = f.read()
|
||
else:
|
||
input_bytes = input_data
|
||
|
||
try:
|
||
import numpy as np
|
||
input_bytes = np.frombuffer(input_bytes, dtype=np.uint8)
|
||
for hcode in img_head: # 遍历文件头
|
||
t = input_bytes[0] ^ hcode[0] # 异或解密
|
||
if np.all(t == np.bitwise_xor(np.frombuffer(input_bytes[:len(hcode)], dtype=np.uint8),
|
||
np.frombuffer(hcode, dtype=np.uint8))): # 使用NumPy进行向量化的异或解密操作,并进行类型转换
|
||
fomt = img_head[hcode] # 获取文件格式
|
||
|
||
out_bytes = np.bitwise_xor(input_bytes, t) # 使用NumPy进行向量化的异或解密操作
|
||
md5 = get_md5(out_bytes)
|
||
return fomt, md5, out_bytes
|
||
return False
|
||
except ImportError:
|
||
pass
|
||
|
||
for hcode in img_head:
|
||
t = input_bytes[0] ^ hcode[0]
|
||
for i in range(1, len(hcode)):
|
||
if t == input_bytes[i] ^ hcode[i]:
|
||
fomt = img_head[hcode]
|
||
out_bytes = bytearray()
|
||
for nowByte in input_bytes: # 读取文件
|
||
newByte = nowByte ^ t # 异或解密
|
||
out_bytes.append(newByte)
|
||
md5 = get_md5(out_bytes)
|
||
return fomt, md5, out_bytes
|
||
return False
|
||
|
||
|
||
def read_emoji(cdnurl, is_show=False):
|
||
headers = {
|
||
"User-Agent": "Mozilla/5.0 (Linux; Android 10; Redmi K30 Pro) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Mobile Safari/537.36"
|
||
|
||
}
|
||
r1 = requests.get(cdnurl, headers=headers)
|
||
rdata = r1.content
|
||
|
||
if is_show: # 显示表情
|
||
img = Image.open(BytesIO(rdata))
|
||
img.show()
|
||
return rdata
|
||
|
||
|
||
def decompress_CompressContent(data):
|
||
"""
|
||
解压缩Msg:CompressContent内容
|
||
:param data:
|
||
:return:
|
||
"""
|
||
if data is None or not isinstance(data, bytes):
|
||
return None
|
||
i = 0
|
||
uncompressed_data = []
|
||
|
||
while i < len(data):
|
||
# 读取第一个字节
|
||
byte1 = data[i]
|
||
# 从高四位得到无匹配的明文长度Lh
|
||
Lh = byte1 >> 4
|
||
Li = byte1 & 0x0F # 从低四位得到匹配的数据长度Li
|
||
if Lh == 0x0f:
|
||
# 继续读取下一个字节L1
|
||
i = i + 1
|
||
L1 = data[i]
|
||
Lh = L1 + 0x0f
|
||
|
||
while data[i] == 0xFF:
|
||
# 继续读取下一个字节,并累加
|
||
i = i + 1
|
||
Lh += data[i]
|
||
i += 1
|
||
uncompressed_data.extend(data[i:i + Lh])
|
||
i = i + Lh
|
||
|
||
# 读取匹配的偏移量Offset
|
||
bias = data[i:i + 2]
|
||
offset = int.from_bytes(bias, byteorder='little')
|
||
i = i + 2
|
||
|
||
# 读取匹配的数据长度Li
|
||
if Li != 0x0F:
|
||
# 实际的匹配压缩长度即为Li = Li + 4
|
||
Li += 4
|
||
else:
|
||
# 从偏移量后面的可选匹配长度区域读取一个字节M1
|
||
M1 = data[i]
|
||
Li += M1
|
||
while M1 == 0xFF:
|
||
# 继续读取下一个字节M2
|
||
i += 1
|
||
M1 = data[i]
|
||
Li += M1
|
||
Li += 4
|
||
# 复制匹配的数据到解压缩数据缓冲区
|
||
uncompressed_data.extend(uncompressed_data[-offset:-offset + Li])
|
||
# break
|
||
|
||
# 转换为字符串
|
||
uncompressed_data = bytes(uncompressed_data) # .decode('utf-8')
|
||
return uncompressed_data
|
||
|
||
|
||
def read_audio_buf(buf_data, is_play=False, is_wave=False, rate=24000):
|
||
silk_file = BytesIO(buf_data) # 读取silk文件
|
||
pcm_file = BytesIO() # 创建pcm文件
|
||
|
||
pysilk.decode(silk_file, pcm_file, rate) # 解码silk文件->pcm文件
|
||
pcm_data = pcm_file.getvalue() # 获取pcm文件数据
|
||
|
||
silk_file.close() # 关闭silk文件
|
||
pcm_file.close() # 关闭pcm文件
|
||
if is_play: # 播放音频
|
||
def play_audio(pcm_data, rate):
|
||
p = pyaudio.PyAudio() # 实例化pyaudio
|
||
stream = p.open(format=pyaudio.paInt16, channels=1, rate=rate, output=True) # 创建音频流对象
|
||
stream.write(pcm_data) # 写入音频流
|
||
stream.stop_stream() # 停止音频流
|
||
stream.close() # 关闭音频流
|
||
p.terminate() # 关闭pyaudio
|
||
|
||
play_audio(pcm_data, rate)
|
||
|
||
if is_wave: # 转换为wav文件
|
||
wave_file = BytesIO() # 创建wav文件
|
||
with wave.open(wave_file, 'wb') as wf:
|
||
wf.setparams((1, 2, rate, 0, 'NONE', 'NONE')) # 设置wav文件参数
|
||
wf.writeframes(pcm_data) # 写入wav文件
|
||
rdata = wave_file.getvalue() # 获取wav文件数据
|
||
wave_file.close() # 关闭wav文件
|
||
return rdata
|
||
|
||
return pcm_data
|
||
|
||
|
||
def read_audio(MsgSvrID, is_play=False, is_wave=False, DB_PATH: str = "", rate=24000):
|
||
if DB_PATH == "":
|
||
return False
|
||
|
||
DB = sqlite3.connect(DB_PATH)
|
||
cursor = DB.cursor()
|
||
sql = "select Buf from Media where Reserved0='{}'".format(MsgSvrID)
|
||
DBdata = cursor.execute(sql).fetchall()
|
||
|
||
if len(DBdata) == 0:
|
||
return False
|
||
data = DBdata[0][0] # [1:] + b'\xFF\xFF'
|
||
pcm_data = read_audio_buf(data, is_play, is_wave, rate)
|
||
return pcm_data
|
||
|
||
|
||
def wordcloud_generator(text, out_path="", is_show=False, img_path="", font="C:\Windows\Fonts\simhei.ttf"):
|
||
"""
|
||
词云
|
||
:param is_show: 是否显示
|
||
:param img_path: 背景图片路径
|
||
:param text: 文本
|
||
:param font: 字体路径
|
||
:return:
|
||
"""
|
||
try:
|
||
from wordcloud import WordCloud
|
||
import jieba
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
from matplotlib.font_manager import fontManager
|
||
except ImportError as e:
|
||
print("error", e)
|
||
raise ImportError("请安装wordcloud,jieba,numpy,matplotlib,pillow库")
|
||
words = jieba.lcut(text) # 精确分词
|
||
newtxt = ' '.join(words) # 空格拼接
|
||
# 字体路径
|
||
|
||
# 创建WordCloud对象
|
||
wordcloud1 = WordCloud(width=800, height=400, background_color='white', font_path=font)
|
||
wordcloud1.generate(newtxt)
|
||
|
||
if out_path and out_path != "":
|
||
wordcloud1.to_file("wordcloud.png") # 保存图片
|
||
if img_path and os.path.exists(img_path): # 设置背景图片
|
||
img_color = np.array(Image.open(img_path)) # 读取背景图片
|
||
img_color = img_color.reshape((img_color.shape[0] * img_color.shape[1], 3))
|
||
wordcloud1.recolor(color_func=img_color) # 设置背景图片颜色
|
||
if is_show:
|
||
# 显示词云
|
||
wordcloud_img = wordcloud1.to_image()
|
||
wordcloud_img.show()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
wordcloud_generator("我是中国人,我喜欢吃饭", is_show=True)
|